--- title: "Introduction" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` In this article, we would like to give an example of how to create a very simple drilldown map with `leafdown`. \ The goal is to create a map that: - shows the GDP (gross domestic product) of the federal states of Germany - allows the user to drill down to the administrative districts of selected federal states. ```{r, echo=FALSE, out.width=550, out.height=400} knitr::include_graphics("../man/figures/app_germany_map.png") ``` Let's first load the libraries we are going to use for our app. \ ```{r setup, message=FALSE,warning=FALSE} library(leafdown) library(leaflet) library(shiny) library(dplyr) library(shinycssloaders) library(shinyjs) library(dplyr) library(raster) ``` (Note that the `shinyjs` package is loaded for some automatic warning messages that the `leafdown` map can return to the user of the shiny app.) ## SpatialPolygonsDataFrames `leafdown` requires a list of `SpatialPolygonsDataFrames` (`spdfs`) for the regions we want to display on our map. To get these spdfs we can use the `getData` function of the `raster` package. For "Germany", `level = 1` contains the spdf for the federal states and `level = 2` the spdf for the administrative districts. If an `spdf` comes from a different source, it is important that the structure is identical to the `spdfs` that come from the `raster` package. ```{r, echo=FALSE} ger1 <- readRDS("../inst/extdata/ger1-005.RDS") ger2 <- readRDS("../inst/extdata/ger2-005.RDS") ``` ```{r, eval=FALSE} ger1 <- raster::getData(country = "Germany", level = 1) ger2 <- raster::getData(country = "Germany", level = 2) ``` The spdf for `level = 2` does not display all German umlauts correctly. Therefore we adjust some names so that we can assign our data more easily later on. ```{r, message=FALSE} ger2@data[c(76, 99, 136, 226), "NAME_2"] <- c( "Fürth (Kreisfreie Stadt)", "München (Kreisfreie Stadt)", "Osnabrück (Kreisfreie Stadt)", "Würzburg (Kreisfreie Stadt)" ) ``` Let's now create our `spdfs_list` which we can provide to `leafdown` in our shiny app. It is important that `spdfs_list` is ordered such that the spdf of the highest map level (in our case the federal states) is the first list element and so on. ``` list (spdfs_list) │ └───spdf (spdf of first map level) │ └───spdf (spdf of second map level) ``` ```{r} spdfs_list <- list(ger1, ger2) ``` ## Data For this app, we will use the example data sets that come with the `leafdown` package. The data.frame `gdp_2014_federal_states` contains the GPD of 2014 for the federal states and `gdp_2014_admin_districts` for the administrative districts of Germany. ```{r} head(gdp_2014_federal_states) ``` ```{r} head(gdp_2014_admin_districts) ``` (For more information about the data, please see `?gdp_2014_federal_states` or `?gdp_2014_admin_districts` respectively) ## Leafdown workflow In this part, we sketch and explain the typical `leafdown` workflow. \ ```{r, echo=FALSE, fig.width=7, eval=FALSE} DiagrammeR::grViz(' digraph { rankdir=LR; rank="same"; graph [fontname = "Segoe UI", fontsize = 36, nodesep="2", ranksep="1", color = dimgrey]; node [fontname = "Segoe UI", fontsize = 30, color = dimgrey]; edge [fontname = "Segoe UI", fontsize = 30, color = dimgrey]; "Invisible"[style=invis]; c0 [ label = "Initialization \n ($new)", fillcolor = palegreen, style=filled, color = "grey" ]; subgraph cluster01 { label="Map Level 1"; rank="same"; a0 [label="Add Data \n ($add_data)", fillcolor = OldLace, style=filled]; a1 [label="Draw Map \n ($draw_leafdown)", fillcolor = Moccasin, style=filled]; a2 [label="Select Shapes", fillcolor = lightyellow, style=filled]; a3 [label="Drill Down \n ($drill_down)", fillcolor = PowderBlue, style=filled]; a0 -> a1; a1 -> a2; a2 -> a3; }; subgraph cluster02 { label="Map Level 2"; rank="same"; b0 [label=" Drill Up \n ($drill_up)", fillcolor = PowderBlue, style=filled]; b3 [label=" Add Data \n ($add_data) ", fillcolor = OldLace, style=filled]; b1 [label="..."]; b2 [label="Draw Map \n ($draw_leafdown)", fillcolor = Moccasin, style=filled]; b0 -> b1 [dir="back"]; b1 -> b2 [dir="back"]; b2 -> b3 [dir="back"]; }; edge[constraint=false]; a1->b1 [style=invis]; a2->b2 [style=invis]; a3->b3 [style=dotted]; b0->a0 [style=dotted]; edge[constraint=true]; Invisible -> b0[style=invis]; edge[constraint=true]; c0 -> a0; Invisible -> a0[style=invis]; } ') %>% DiagrammeRsvg::export_svg() %>% charToRaw() %>% rsvg::rsvg_png("res/leafdown_workflow.png") ``` ```{r, echo=FALSE, out.width=700, out.height=200} knitr::include_graphics("../man/figures/leafdown_workflow.png") ``` (Please note that the execution of the code snippets in this chapter **only** works within a shiny app) ### Initialization As usual for R6 classes, we create a new object of our `Leafdown` class using the `new()` method. \ For this we have to specify the: - `spdfs_list`: The list containing the spdfs of both map levels. - `map_output_id`: The output_id we specify in our ui via `leafletOutput("<>")` - `input`: The `input` from the shiny app - `join_map_levels_by` (optional). A named vector with the columns by which the map levels should be joined. In case of two map levels this is set by default to c("GID_1" = "GID_1"), which is appropriate when 'Provinces/States' is the first and 'Districts' the second map level. If you use 'Countries' as first and 'Provinces/States' as second level you have to set it to `c("ISO" = "GID_0")`. For more information, see the Section *Joining map levels* in the [Multilevel article.](https://hoga-it.github.io/leafdown/articles/Multilevel.html) ```{r, echo=FALSE} input <- reactiveValues(foo = "bar") # a little helper as we are currently not in a shiny session ``` ```{r} my_leafdown <- Leafdown$new(spdfs_list, map_output_id = "leafdown", input = input) ``` ### Data In the next step, we add data to our `leafdown` object. Using the attribute `$curr_data` we can retrieve the data of the current map level. At the beginning `$curr_data` only contains metadata. With metadata, we refer to the data that describes the polygons, such as region names, region IDs, etc. The metadata is automatically set with the `spdf_list[[i]]@data` where `i` is the current map level. ```{r} metadata <- my_leafdown$curr_data print(head(metadata)) ``` Now we can add new columns for variables we want to display on our map to the existing metadata. It is important that the initial metadata remains unchanged and no rows are removed. ```{r} new_data <- metadata %>% dplyr::left_join(gdp_2014_federal_states, by = c("NAME_1" = "Federal_State")) ``` After creating our new data set, we give it to our `leafdown`object with the `$add_data` method. ```{r} my_leafdown$add_data(new_data) ``` The current data of a `leafdown` object can be retrieved via the `$curr_data` attribute. ```{r} print(head(my_leafdown$curr_data)) ``` ### Draw map To draw the map we use the method `$draw_leafdown`. The specified arguments in the method are internally handed over to the `addPolygons` function of `leaflet`. Therefore attributes like `fillColor` or `opacity` can be specified just as for a usual `leaflet` map. ```{r, eval=FALSE} map <- my_leafdown$draw_leafdown( fillColor = ~ colorNumeric("Greens", GDP_2014)(GDP_2014) ) ``` The `$draw_leafdown` method returns a usual `leaflet` map. This also allows us to add a legend or a background to our map. ```{r, eval=FALSE} map <- map %>% addLegend( pal = colorNumeric("Grees", data$GDP_2014), values = data$GDP_2014 ) ``` ### Selection Let's now have look at what happens when a user clicks on a region. Internally a `leafdown` object has an observer for `shape_click` events. Once a user clicks on a certain region, this region becomes "active" and its boundaries on the map are highlighted. (If the clicked region is already active, it becomes inactive). We can retrieve the data of active regions via the `$curr_sel_data` attribute. Assuming that the user clicked on Bavaria and Hesse than `$curr_sel_data` would look as follows: ```{r, eval=FALSE} my_leafdown$curr_sel_data() ``` ```{r, echo=FALSE} subset(my_leafdown$curr_data, NAME_1 %in% c("Bayern", "Hessen")) ``` Note that this attribute is a `reactiveValue` that allows to update graphs and other elements upon a user click. For more on the connection to other elements please see the following [tutorial](https://hoga-it.github.io/leafdown/articles/Connection_to_other_elements.html). ### Drilldown Using the `$drill_down` method we can now drill down to the admin districts of the **active** federal states. ```{r, eval=FALSE} my_leafdown$drill_down() ``` This will update the currently active spdf (`my_leafdown$curr_spdf`) which then only contains polygons and corresponding metadata for regions whose parents were active in the upper (previous) map level. In our case the parents are "Bavaria" and "Hesse", so only spdfs of admin districts within these federal states will be contained in `my_leafdown$curr_spdf`. ```{r, eval=FALSE} length(my_leafdown$curr_spdf) ``` ```{r, echo=FALSE} print(2) ``` ### Data The updated data can then again be retrieved via `$curr_data`. ```{r eval = FALSE} my_leafdown$drill_down() metadata <- my_leafdown$curr_data head(metadata) ``` ```{r echo=FALSE} head(subset(ger2@data, GID_1 %in% c("DEU.2_1", "DEU.7_1"))) ``` ```{r eval = FALSE} unique(metadata$NAME_1) ``` ```{r echo=FALSE} c("Bayern", "Hessen") ``` Just as before we can add new columns for variables we want to display on our map to the existing metadata. ```{r, eval=FALSE} new_data <- metadata %>% dplyr::left_join(gdp_2014_admin_districts, by = c("NAME_2" = "Admin_District")) my_leafdown$add_data(new_data) ``` Again, the current data can be retrieved via the `$curr_data` attribute. ```{r, eval=FALSE} head(my_leafdown$curr_data) ``` ```{r, echo=FALSE} ger2@data %>% filter(GID_1 %in% c("DEU.2_1", "DEU.7_1")) %>% dplyr::left_join(gdp_2014_admin_districts, by = c("NAME_2" = "Admin_District")) %>% slice_head(n = 5) %>% as.data.frame() ``` ### Draw map After adding `GDP_2014` to our admin district data, we can again draw our map. Note that all non-active parent regions grayed out in the background. ```{r, eval=FALSE} my_leafdown$draw_leafdown( fillColor = ~ colorNumeric("Blues", GDP_2014)(GDP_2014) ) ``` ### Drillup Using the `$drill_up` method we can now drill back up to the federal states. Note that the active regions (we selected before we drilled down) are still active. ```{r, eval=FALSE} my_leafdown$drill_down() ``` ### Data To draw the map we first have to add our federal states data again. ```{r} new_data <- metadata %>% left_join(gdp_2014_federal_states, by = c("NAME_1" = "Federal_State")) ``` ### Draw map And again we can draw our map just as usual. ```{r, eval=FALSE} map <- my_leafdown$draw_leafdown( fillColor = ~ colorNumeric("Blues", GDP_2014)(GDP_2014) ) ``` We can use the `keep_zoom()` method to keep the current zoom level as well as the current view center of the user after the map is drawn. ```{r, eval=FALSE} map <- my_leafdown$keep_zoom(map, input) ``` ## Shiny App ### Preparation ```{r, eval=FALSE} library(leafdown) library(leaflet) library(shiny) library(dplyr) library(shinyjs) ger1 <- raster::getData(country = "Germany", level = 1) ger2 <- raster::getData(country = "Germany", level = 2) ger2@data[c(76, 99, 136, 226), "NAME_2"] <- c( "Fürth (Kreisfreie Stadt)", "München (Kreisfreie Stadt)", "Osnabrück (Kreisfreie Stadt)", "Würzburg (Kreisfreie Stadt)" ) spdfs_list <- list(ger1, ger2) ``` ### UI ```{r, eval=FALSE} ui <- shiny::fluidPage( tags$style(HTML(".leaflet-container {background: #ffffff;}")), useShinyjs(), actionButton("drill_down", "Drill Down"), actionButton("drill_up", "Drill Up"), leafletOutput("leafdown", height = 600), ) ``` ### Server ```{r} # Little helper function for hover labels create_labels <- function(data, map_level) { labels <- sprintf( "%s
%g € per capita", data[, paste0("NAME_", map_level)], data$GDP_2014 ) labels %>% lapply(htmltools::HTML) } ``` ```{r, eval=FALSE} server <- function(input, output) { my_leafdown <- Leafdown$new(spdfs_list, "leafdown", input) update_leafdown <- reactiveVal(0) observeEvent(input$drill_down, { my_leafdown$drill_down() update_leafdown(update_leafdown() + 1) }) observeEvent(input$drill_up, { my_leafdown$drill_up() update_leafdown(update_leafdown() + 1) }) output$leafdown <- renderLeaflet({ update_leafdown() meta_data <- my_leafdown$curr_data curr_map_level <- my_leafdown$curr_map_level if (curr_map_level == 1) { data <- meta_data %>% left_join(gdp_2014_federal_states, by = c("NAME_1" = "Federal_State")) } else { data <- meta_data %>% left_join(gdp_2014_admin_districts, by = c("NAME_2" = "Admin_District")) } my_leafdown$add_data(data) labels <- create_labels(data, curr_map_level) my_leafdown$draw_leafdown( fillColor = ~ colorNumeric("Greens", GDP_2014)(GDP_2014), weight = 2, fillOpacity = 0.8, color = "grey", label = labels, highlight = highlightOptions(weight = 5, color = "#666", fillOpacity = 0.7) ) %>% my_leafdown$keep_zoom(input) %>% addLegend("topright", pal = colorNumeric("Blues", data$GDP_2014), values = data$GDP_2014, title = "GDP per capita (2014)", labFormat = labelFormat(suffix = "€"), opacity = 1 ) }) } ``` ### Run App ```{r, eval=FALSE} shinyApp(ui, server) ```